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Abstract

Many mobile marine taxa are changing their distributions in response to climate

change. Such movements pose a challenge to fisheries monitoring and management,

particularly in systems where climate-adaptive and ecosystem-based management

objectives are emphasized. While shifts in species distributions can be discerned from

long-term fisheries-independent monitoring data, distilling coherent patterns across

space and time from such datasets can be challenging, particularly for transboundary

stocks. One approach for identifying dominant patterns of spatiotemporal variation

that has been widely used in physical atmospheric and oceanographic studies is

empirical orthogonal function (EOF) analysis, wherein spatiotemporal variation is

separated into time-series of annual factor loadings and spatial response maps. Here,

we apply an extension of EOF analysis that has been modified for compatibility with

biological sampling data to a combined US–Russian fisheries-independent survey

dataset that spans the eastern (United States) and western (Russia) Bering Sea shelf

to estimate dominant patterns of spatiotemporal variation for 10 groundfish species

at a shelf-wide scale. EOF identified one axis of variability that was coherent with

the extent of cold (≤0�C) near-bottom waters (the cold pool) previously shown to be

a key influence on species distributions and ecosystem structure for the Bering Sea.

However, the leading axis of variability identified by our EOF analysis was

characterized by low frequency changes in the distributions of several species over

longer time scales. Our analysis has important implications for predicting variation in

species distributions over time and demonstrates a widely applicable method for

leveraging combined fisheries-independent survey datasets to characterize

community-level responses to ecosystem change at basin-wide scales.
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1 | INTRODUCTION

As the oceans warm, many mobile marine taxa are shifting their

distributions beyond their historical ranges (Nye et al., 2009; Perry

et al., 2005; Pinsky et al., 2013), posing challenges to fisheries

monitoring and management (Link et al., 2011; Pinsky et al., 2018).

Consequently, characterizing and predicting variation in species

distributions over time is often an important objective for scientists

and managers (Currie et al., 2019; Karp et al., 2019; Smith

et al., 2023). While distributional changes can be discerned from long-

term fisheries-independent monitoring datasets, identifying coherent

patterns and drivers behind such shifts can be difficult. These

challenges are compounded further for transboundary stocks whose

movements may extend beyond the extent of any one nation's territo-

rial waters and marine resource surveys. However, there is a growing

body of methodology being developed for combining data from

multiple nations' fisheries-independent surveys (Maureaud

et al., 2021; Moriarty et al., 2020; O'Leary et al., 2021, 2022). Such

combined survey datasets not only expand the effective spatial scope

of resource monitoring and assessment but also offer opportunities to

characterize patterns of variation in species distributions over time

and drivers thereof at broader spatial scales.

Dominant spatiotemporal patterns in one or more response

variables can be identified using dimension reduction techniques such

as empirical orthogonal function (EOF) analysis, which decomposes

spatiotemporal variation into separable components of annual indices

and spatial response maps. EOF is often applied to physical atmo-

spheric and oceanographic measurements to produce indices that

summarize patterns of climatic variation and teleconnections (correla-

tions over broad spatial scales; e.g., the El Niño Southern Oscillation).

Recent research has adapted EOF for use with zero-inflated and noisy

samples of numerical density for marine organisms (Grüss et al., 2021;

Thorson et al., 2021; Thorson, Cheng, et al., 2020; Thorson,

Ciannelli, & Litzow, 2020), in which the resulting indices represent

dominant patterns of variation in species distributions over time. Such

models can be applied to biological survey data and can accommodate

multispecies datasets to make inferences at the community level.

However, EOF has yet to be adapted for combining fisheries-

independent survey datasets from multiple countries to identify

basin-scale patterns of variation in transboundary species

assemblages.

The Bering Sea shelf is a transboundary ecosystem that spans the

territorial waters of the United States to the east and the Russian

Federation to the west. As the basis for many valuable fisheries, the

Bering Sea has been studied heavily, and the oceanography of this

region is well characterized, as are the mechanisms linking environ-

mental conditions to biological outcomes via bottom-up effects

(e.g., Danielson et al., 2011; Hunt et al., 2011; Stabeno et al., 2001;

Wyllie-Echeverria & Wooster, 1998). Similarly, research has identified

top-down drivers (e.g., predation and fishing) of population and com-

munity dynamics in the Bering Sea that are important for fisheries

assessment and management (Aydin & Mueter, 2007; Holsman

et al., 2016). Much of the research that informs these frameworks has

focused on the US (southeastern, northeastern) or Russian (western)

shelf areas separately, often with the goal of understanding and

predicting variation in the distribution and abundance of fish stocks

within each country's waters (Grüss et al., 2021; Hunt et al., 2011;

Mueter et al., 2006; Stabeno et al., 2001; Stepanenko &

Gritsay, 2016; Thorson, 2019). However, substantial warming and sea

ice loss in the Bering Sea are causing changes in species' distributions,

resulting in northward shifts (Mueter & Litzow, 2008; Spies

et al., 2020; Stevenson & Lauth, 2019) and increased movements

between the eastern and western shelves in some cases (Eisner

et al., 2020). As such, the spatial scope of environmental and ecologi-

cal processes affecting fish populations in this region may be evolving,

making it increasingly important to consider the biophysical and

community dynamics of the Bering Sea at a broader, shelf-wide scale.

Efforts to track changing species distributions by combining

fisheries-independent survey data are underway in several regions

and are proving useful for expanding the effective spatial coverage of

monitoring (Maureaud et al., 2021; Moriarty et al., 2020; O'Leary

et al., 2021). However, these combined datasets have seldom been

leveraged to explore patterns of variation in stock dynamics and

oceanographic or ecological drivers thereof at broader scales.

Moreover, variation in fish and invertebrate distributions in the Bering

Sea are strongly linked to environmental conditions, suggesting the

possibility for coherent patterns of spatiotemporal variation among

species that may not be evident from single-species analyses. Here,

we apply an extension of EOF analysis (Thorson, Ciannelli, &

Litzow, 2020) to a combined multispecies US–Russian fisheries-

independent survey dataset to identify dominant axes of spatiotem-

poral variability for Bering Sea groundfishes at a shelf-wide scale. We

found one axis of variability that is coherent with the spatial extent of

cold (≤0�C) near-bottom waters (the cold pool) known to be a key

influence on species distributions and ecosystem dynamics in the

Bering Sea (Eisner et al., 2020; Kotwicki & Lauth, 2013). However, the

primary axis of variability identified by our analysis was associated

with sustained, low frequency changes in the distributions of several

species. Further analyses using spatially-varying coefficient models

and range shift metrics corroborated the patterns identified by EOF.

Our findings have useful applications for characterizing and predicting

species distribution shits in the Bering Sea, and our analysis

demonstrates a generic approach for leveraging combined fisheries-

independent survey datasets to understand community-level

responses to ecosystem change at broader scales.

2 | METHODS

The goal of this study is to use combined fisheries-independent

survey data that span the southeastern (EBS), northeastern (NBS), and

western (WBS) Bering Sea shelves to characterize patterns of

spatiotemporal variation for Bering Sea groundfish at a shelf-wide

scale. Our analysis proceeds in three general stages: (1) using explor-

atory EOF to identify dominant axes of variability for the groundfish

assemblage represented in our data set, (2) comparing these estimated

2 DEFILIPPO ET AL.



axes to an oceanographic index known to influence species distribu-

tions in the Bering Sea (cold pool extent), and (3) further investigating

patterns indicated by exploratory EOF using a confirmatory factor

model (sensu Grüss et al., 2020; i.e., with spatially varying coefficient

[SVC] models), and range shift metrics.

2.1 | Study region and survey extents

The fisheries-independent survey data analyzed in this study include

coverage of the EBS, NBS, and WBS subregions. The EBS is defined

here as the section of the Bering Sea southeast of the US–Russian

international maritime boundary and spans from Bristol Bay and the

Alaska Peninsula to the south, to north of Nunivak and St. Matthew

Island (Figure 1). The EBS shelf is often viewed as being comprised of

three distinct domains defined by bathymetric and oceanographic

conditions: the inner domain (0–50 m), middle domain (50–100 m),

and outer domain (100–200 m) (Coachman, 1986; Kinder &

Schumacher, 1981; Figure 1). The NBS, as defined here, also occurs in

US territorial waters and spans from north of Nunivak and

St. Matthew Island up to Norton Sound and the Bering Strait

(Figure 1). The NBS is generally shallower (<100 m) and bathymetri-

cally homogenous compared with the EBS. West of the international

maritime border in Russian territorial waters, the WBS spans from the

western Bering Strait, the Chukotka Peninsula and Anadyr Bay to the

north, and Cape Navarin and the Koryak shelf to the south (Figure 1).

The area we define as the WBS in our study includes a broad range of

depths, including several areas exceeding 200 m (Figure 1).

2.2 | Fisheries-independent survey data

The primary EBS and NBS data used in this study are presence–

absence and biomass measurements collected from fishery-

independent bottom trawl surveys conducted by the US National

Oceanic and Atmospheric Administration's (NOAA) Alaska Fisheries

Science Center (AFSC). The EBS survey occurs annually from May to

early August and samples a fixed set of 376 stations as part of a

systematic design with a minimum grid resolution of 37.04 km2 and a

maximum depth of 200 m (Lauth et al., 2019). Sampling for the EBS

survey begins in the southeast corner of the survey extent (Bristol

Bay) and proceeds west using two chartered commercial vessels. Each

vessel tows a standard 830–1120 eastern otter trawl with 10-cm mesh

for a 30 min at a target speed of 3 knots (Lauth et al., 2019). Survey

effort is measured as the area-swept, calculated as the product of the

distance fished (measured duration of seafloor contact measured

using a GPS and a bottom contact sensor), and net width measured

using an acoustic sensor. A total of 12 vessels have been used during

the time-period considered in this study.

The NBS survey follows the same sampling design and protocol

as the EBS survey but occurs later in the year, from early August to

September. Additionally, the frequency and spatial extent of the NBS

F IGURE 1 Map of the Bering Sea and associated features. The spatial extent of all survey data analyzed in this study is indicated by the outer
gray boundary. Subregions, as defined in the text, are delineated by the dotted gray lines demarcating the western (WBS), southeastern (EBS), and
northeastern (NBS) shelf regions.

DEFILIPPO ET AL. 3



survey have been more irregular than the EBS survey, with partial

sampling of the NBS survey extent occurring in 1982, 1985, 1988,

1991, 1994, 2001, 2005, 2006, and 2018, and full sampling in 2010,

2017, and 2019 (Lauth et al., 2019).

All WBS data were collected from fisheries-independent bottom

trawl surveys conducted by the Pacific Branch of the Russian Federal

Research Institute of Fisheries and Oceanography (TINRO). Sampling

of the WBS has occurred from 1982 to 2017 throughout all months

of the year, but primarily from May to August (O'Leary et al., 2021).

The WBS survey does not follow a probabilistic sampling design, and

the timing and spatial extent of the survey are variable. Vessels

typically tow for 30 min at 3.2 knots, although tow duration ranged

from 0.08 to 24 h (O'Leary et al., 2021). A total of 32 unique vessels

have been used to conduct the survey throughout the time period

considered in this study. Importantly, TINRO also surveyed the EBS

shelf from 1982 to 1991 as part of a cooperative sampling effort

between NOAA and TINRO (https://apps-afsc.fisheries.noaa.gov/

RACE/surveys/cruise_archives/cruises1983/results_AK-CH1983-01_

03.pdf; Volvenko et al., 2018), which facilitates the estimation of

catchability ratios (Section 2.4.1) between the AFSC and TINRO

surveys needed to combine these disparate data sources (O'Leary

et al., 2021, 2022). The species included in our study were selected

based on criteria of life history and taxonomic representation as well

as sufficient abundance in the catch data—particularly during years in

which TINRO surveyed the EBS—to allow estimation of species-

specific catchability ratios. Such catchability ratios have been previ-

ously estimated for Pacific cod, Gadus macrocephalus, Alaska plaice,

Pleuronectes quadrituberculatus, and walleye pollock, Gadus chalco-

grammus by O'Leary et al. (2021, 2022) but not for the other seven

species in our analysis: Greenland turbot, Reinhardtius hippoglossoides,

Pacific halibut Hippoglossus stenolepis, flathead sole, Hippoglossoides

elassodon, yellowfin sole, Limanda aspera, northern rock sole,

Lepidopsetta polyxystra, yellow Irish lord, Hemilepidotus jordani, and

great sculpin, Myoxocephalus polyacanthocephalus.

2.3 | The cold pool index

Given the well-documented importance of the cold pool in the Bering

Sea, we are particularly interested in whether dominant axes of

variability estimated at a shelf-wide scale (EBS + NBS + WBS) are

coherent with cold pool extent. The formation of winter

(approximately mid-December) sea ice in the Bering Sea creates a

layer of cold, saline water that sinks to the seafloor and forms the cold

pool. While the cold pool is conventionally defined as the area of

waters 2�C or colder (Wyllie-Echeverria & Wooster, 1998), there is

evidence that the 0�C isotherm may be more influential in shaping

species distributions (Kotwicki & Lauth, 2013). The presence of sea

ice in the spring limits water column mixing, and the resulting

stratification restricts heat exchange between the cold pool and the

warming surface waters (Stabeno et al., 2012; Wyllie-Echeverria &

Wooster, 1998). Consequently, the cold pool can persist into the

summer at a size determined by the extent and phenology of sea ice

(De Robertis & Cokelet, 2012; Hollowed et al., 2012; Stabeno

et al., 2012). For instance, in warm years associated with reduced ice

coverage and earlier (i.e., before early March) ice retreat, the extent of

the cold pool may be minimal and restricted to the northern portion

of the middle domain (50–100 m isobath) (Hollowed et al., 2012;

Stabeno et al., 2010). Conversely, in colder years where sea ice extent

is larger and persists through April, the cold pool may extend farther

south and occupy much of the middle shelf (Stabeno et al., 2001;

Wyllie-Echeverria & Wooster, 1998). The cold pool is thought to act

as a barrier to the movements of subarctic fishes, restricting north-

ward and cross-shelf migrations (Eisner et al., 2020; Kotwicki

et al., 2005; Stabeno et al., 2012). As such, the spatial extent of the

cold pool is a key influence on the distributions of many subarctic fish

and invertebrate species (Ciannelli & Bailey, 2005; Mueter &

Litzow, 2008; Thorson, 2019; Thorson, Ciannelli, & Litzow, 2020).

Furthermore, cold pool size is directly or indirectly associated with

variation in circulation patterns (Stabeno et al., 2012) the timing and

magnitude of primary production (Stabeno et al., 2002, 2007, 2010),

zooplankton community composition (Coyle et al., 2011; Sigler

et al., 2016), and predator–prey overlap (De Robertis &

Cokelet, 2012; Grüss et al., 2020), and thus serves as a useful proxy

for ecosystem conditions. However, much of the research exploring

the effect of the cold pool on species distributions and ecosystem

dynamics has focused on particular subregions (e.g., the EBS), and less

is known about how the Bering Sea responds to variation in the cold

pool at a shelf-wide scale (but see Eisner et al., 2020).

We compared axes of variability identified by exploratory EOF

(Section 2.4.1) with annual measurements of the cold pool extent and

calculated Spearman's correlation coefficient (ρ) for each relationship.

We also directly estimated the effects of the cold pool on each

species' spatiotemporal dynamics at the shelf-wide scale using SVC

models (Section 2.4.2). Data on cold pool extent used in these

analyses were the measured spatial extent in square kilometers (km2)

of bottom temperatures 0�C or colder based on temperature

measurements recorded on AFSC surveys. We use a 0�C threshold

here based on previous evidence that some fish species (i.e., walleye

pollock) do not form feeding aggregations in waters below this

temperature in the EBS (Baker, 2021) and that 0�C may be a more

important temperature threshold affecting groundfish distributions

(Kotwicki & Lauth, 2013).

It is important to note that the measured cold pool area used in

this study is based on annual NOAA bottom trawl survey data and

thus confined to the southeastern Bering Sea shelf (EBS). While the

area occupied by the cold pool can extend into the WBS and NBS,

consistent measurements of bottom temperatures in these areas were

not available for much of the focal time period of this study. As such,

we use the measured cold pool area in the EBS as a proxy for the total

cold pool area across the Bering Sea shelf (EBS, NBS, and WBS).

While our measurements of cold pool area do not encompass the full

spatial extent of our study area, we assume that the cold pool area in

the EBS is correlated with that of the WBS and NBS (Eisner

et al., 2020), although there may be incongruences that bear consider-

ation when interpreting our results.
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2.4 | Model descriptions

All models used in this study follow a spatiotemporal design

implemented using the vector autoregressive spatiotemporal (VAST)

package (release number 3.9.0) (Thorson & Barnett, 2017) in R-4.0.3

(R Core Team, 2015). The exploratory EOF model was fit to data for

all species simultaneously, while single-species specifications were

used for the SVC model (2.4.2) and calculation of range shift metrics

(2.4.3). While the EOF model was intended to identify patterns

across species at the assemblage level, the range shift metrics and

SVC models were intended to make inferences for individual species

and thus a single-species specification was more suitable. To account

for differences in sampling efficiency between the AFSC and

TINRO surveys, we implemented the method of O'Leary et al. (2022),

which specifies a spatially invariant catchability covariate on both

linear predictors (Qi) for each species representing the log-ratio of

expected catch for the TINRO survey relative to the AFSC survey

if they occurred at the same time and place and with the same

area-swept.

2.4.1 | Exploratory EOF

EOF is a rank reduction approach with a long history of use in physical

oceanographic and atmospheric studies (Grimmer, 1963; McGowan

et al., 1998). Several well-known metrics of atmospheric and

oceanographic variation such as the El Niño Southern Oscillation

(ENSO, Kidson, 1975) and Pacific Decadal Oscillation (PDO, Mantua

et al., 1997) are products of EOF analysis applied to spatiotemporal

physical oceanographic and atmospheric measurements. EOF

operates by taking values of one or more response variables measured

across space and time and identifying dominant axes (factors) of vari-

ability in the response variable(s), which are expressed as time-series

representing each year's association (loading) with a given factor

(Thorson, Ciannelli, & Litzow, 2020). These time-series are accompa-

nied by a spatial ‘response map’, which shows how variables at each

location respond to interannual variation in that axis. For example, the

PDO index is derived from EOF analysis of monthly sea surface

temperature anomalies (Mantua et al., 1997). The PDO index varies in

magnitude and phase (positive vs. negative) over time, which repre-

sent each year's loadings onto this factor. Positive phases of the PDO

are associated with cooler sea surface temperatures in the interior

North Pacific, warmer temperatures along the Pacific coast, and

below-average sea level pressure over the North Pacific (Mantua

et al., 1997), which represents the spatial response maps for this axis

of variation. In other words, the response maps for the PDO are

characterized by negative coefficients for temperature in the interior

North Pacific, positive coefficients for temperature along the Pacific

coast, and negative coefficients for sea level pressure over the North

Pacific.

The exploratory EOF model used here is an extension of conven-

tional EOF that has been modified for applicability to biological

sampling data (Grüss et al., 2021; Thorson et al., 2021; Thorson,

Cheng, et al., 2020; Thorson, Ciannelli, & Litzow, 2020) and follows

spatiotemporal design implemented in VAST. VAST models follow a

generalized linear mixed model framework that approximates the

dependent variable(s) of interest using a link function and two linear

predictors. Variation in the response variable(s) over space and time is

decomposed into three components: (1) temporal variation (βÞ, which

represents changes from year-to-year that are expressed equivalently

among all locations, (2) spatial patterns (ω), which correspond to

unmeasured variation over space that is stable over time and repre-

sents long-term habitat associations, and (3) spatiotemporal variation

(ε), which represents changes from year-to-year that differ across

locations. Biological data present analytical challenges not posed by

the atmospheric or oceanographic measurements to which EOF is

typically applied, such as the presence of many zeros, skewed

distributions, and spatially unbalanced sampling. As such, the EOF

extension used here was implemented using a Poisson-link delta

modeling approach with two estimated linear predictors, n and w,

which represent expected numerical density and biomass-

per-individual respectively such that niwi gives the expected biomass

density (di) of sample (survey haul) i (Thorson, 2018):

log ni cið Þð Þ¼ β1 ci ,tið Þþω ci ,sið Þþ
XNf

f¼1

λ ti, fð Þε sicifð Þþ γ1 cið ÞQi

log wi cið Þð Þ¼ β2 ci,tið Þþ γ2 cið ÞQi,

ð1Þ

where si and ti are the location and year associated with sample i. The

estimated catchability coefficients (γ1 cið Þ,γ2 cið Þ) varied by species and

described the log sampling efficiency of the TINRO surveys relative to

the AFSC surveys via the catchability covariate (QiÞ: Following

O'Leary et al. (2022), Catchability covariates were implemented as

categorical variables denoting the agency that collected each sample

ið Þ with the AFSC surveys defined as the reference category (Qi ¼0Þ.
Thus, the combined effects of the catchability coefficients

eγ1 cið Þeγ2 cið Þ� �
represent the catchability ratio of the TINRO survey rela-

tive to the AFSC surveys. The annual intercepts (β1 ci ,tið Þ, β2 ci,tið Þ)
were specified as fixed effects that are independent among years, and

the spatial variation terms (ω) were estimated as random effects

following a multivariate normal distribution:

ω cð Þ�MVN 0,σ2ωR ηð Þ� �
, ð2Þ

where σ2ω is the marginal spatial variance and R ηð Þ is the correlation

matrix among locations (s), which follows a Matérn function with

decorrelation distance of η and a transformation matrix that allows for

geometric anisotropy such that decorrelation distance varies with

cardinal direction (Thorson et al., 2015). A defining characteristic of

EOF lies in the specification of spatiotemporal variation as the

product of annual factor loadings (λ ti , fð Þ) and a spatial response map

associated with each factor for each category (species in our case)

(ε sicifð Þ). Here, λ ti, fð Þ represents the loadings (λ) between each year

tð Þ and factor (f) based on the estimated loadings matrix Λ. The annual

loadings represent the magnitude and sign of a given year's

association with a given factor. The response map associated with

DEFILIPPO ET AL. 5



each factor (ε c, fð Þ) follows a multivariate normal distribution specified

similarly to the spatial variation terms (Equation 2):

ε c, fð Þ�MVN 0,σ2εR ηð Þ� �
, ð3Þ

where σ2ε represents the marginal spatiotemporal variance.

The encounter probability for a given species in sample i (pi cið Þ)
can be derived as a complementary log–log link from the log-

numerical density (log nið ÞÞ, which represents the probability of

encountering one or more individuals that are drawn from a Poisson

distribution with intensity ni:

pi cið Þ¼1� exp �ni cið Þð Þ: ð4Þ

Similarly, the expected biomass given a positive encounter ri cið Þ
for sample i is obtained from the numerical density and average

biomass per individual (wi cið Þ) as

ri cið Þ¼ ni cið Þ
pi cið Þwi cið Þ: ð5Þ

The probability of the biomass data is then assumed to follow a

lognormal distribution such that

Pr bi cið Þ¼Bð Þ¼ 1�pi cið Þ, B¼0

pi cið ÞxLognormal B, log ri cið Þð Þjσ2r cið Þ� �
, B >0

(

ð6Þ

where 1�pi is the probability mass associated with a biomass of zero,

and Lognormal Bjlog ri cið Þð Þ,σ2r cið Þ� �
is the lognormal probability of

biomass B given an expected biomass for positive encounters of ri

and residual lognormal variance σ2r cið Þ.
To ensure identifiability, constraints must be placed on the

loadings matrix (Λ). Specifically, λ ti, fð Þ were fixed to zero for all values

of t> f, and we imposed a constraint that the loadings for a given

factor must sum to zero (i.e.,
PNt

t¼1
λ ti, fð Þ¼0) where Nt is the number of

years. The zero-centering constraint on annual factor loadings ensures

that spatiotemporal variation is separable from spatial variation such

that in a hypothetical ‘average’ year (i.e., where λ ti , fð Þ¼0ð ), all varia-

tion across space is attributable to ω. After estimation, the loadings

matrix is rotated for interpretability using a rotation matrix P, defined

such that the columns of ΛP are identical to the eigenvectors of ΛTΛ.
Thus, ΛP is defined as the factor index and Λε as the realized spatial

response (Thorson, Ciannelli, & Litzow, 2020). This ‘PCA rotation’
maximizes each axis of variability in sequential order, such that the

first axis explains the most variation (Thorson, Ianelli, et al., 2016),

analogous to how axes are defined in conventional EOF analysis.

2.4.2 | SVC model

The purpose of the SVC model used here is to estimate the spatially

varying effect of the annual cold pool extent and calculate the amount

of variance that this covariate explains for each species. SVCs for cold

pool extent were included on both linear predictors (ξ1 sð Þ,ξ2 sð Þ),
representing the predicted impacts of the covariate on both numbers

density (ni) and average biomass (wi). Note that the specification of

the linear predictors under the SVC model differs from that of the

EOF described in Section 2.4.1 and a full description can be found in

Thorson (2019). Coefficients for each species were specified as a

zero-mean Gaussian Markov random field with unit variance and the

annual cold pool area measurements were z-score transformed prior

to model fitting (i.e., subtracting the mean and dividing by the

standard deviation). We calculated the percent variance explained

(PVE) by the cold pool covariate for each species by comparing the

residual spatiotemporal variance between a model with the cold pool

extent covariate (σ2ϵ ) and a null model without this covariate (σ2ϵ0 )

following Thorson (2019; appendix C):

Percent variance explained PVEð Þ¼1� σ2ϵ
σ2ϵ0

: ð7Þ

Additionally, we calculated the percent deviance explained by the

entire model by comparing the deviance of the fitted model to that of

a null model without any spatial or spatiotemporal random effects or

covariates.

2.4.3 | Range shift metrics

When applied to biological sampling data, axes of variability identified

by exploratory EOF analysis represent patterns of variation in species

distributions over time. To further investigate and interpret such

patterns, we also directly quantified changes in species distributions

by estimating the center of gravity of each species' biomass. Center of

gravity was calculated with respect to both latitude (m¼1), and

longitude (m¼2) as the centroid of the population distribution

(Z t,mð Þ), or the mean location weighted by population density:

Z t,mð Þ¼
Xns
s¼1

z s,mð Þa sð Þd s,tð Þ
I tð Þ , ð8Þ

where d s,tð Þ is the predicted population density at location s, and time

t, a sð Þ is the area associated with location s, and z s,mð Þ is coordinate

of location s (in latitude if m¼1, longitude if m¼2) for which center

of gravity is calculated, and I c,tð Þ is the biomass index (across the

entire study area) in year t. Additional details on center of gravity

calculations can be found in Thorson, Pinsky, and Ward (2016).

2.4.4 | Model estimation and validation

Spatial variables were estimated as random effects following a

Gaussian Markov random field. A specified number of ‘knots’ were

arranged to minimize the distance between the sampling locations

and knots using a k-means algorithm. A stochastic partial differential
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equation approach was then used to generate a triangulated mesh

with a vertex at each knot. The correlation between locations within

the triangular mesh approximates a Matérn function. The value of a

spatial variable at any given location within the mesh was calculated

as the weighted average of the three surrounding vertices using

bilinear interpolation. The spatial domain was defined using a WGS84

projection.

Fixed effects were estimated by identifying their values that

maximized the marginal likelihood via automatic differentiation

(Fournier et al., 2012). The marginal likelihood itself was calculated

when integrating the joint likelihood across values of the random

effects via Laplace approximation (Skaug & Fournier, 2006) as imple-

mented in the TMB R package (Kristensen et al., 2020). The gradient

of the approximated marginal log-likelihood was then minimized

within the R environment. Model convergence was assessed by

verifying that the gradients of all parameters were <0.001. Center of

gravity estimates (Section 2.4.3) were also epsilon bias corrected

(Thorson & Kristensen, 2016) to account for re-transformation bias.

Model fits were evaluated using simulation-based probability-

integral-transform (PIT) residuals (Smith, 1985; Warton et al., 2017)

via Q–Q plots and spatial residual visualizations available in the

DHARMa package (Hartig, 2022). Diagnostic objects for the

simulation-based quantile residuals were generated by sampling from

the predictive distribution of a model's fixed and random effects, and

calculating and plotting the PIT residuals between the observed and

simulated values (Figure S1).

3 | RESULTS

3.1 | Spatial patterns: EBS and NBS

Within the US portion of the Bering Sea shelf, estimates of ω

indicated areas of consistently high relative biomass on the inner shelf

(0–50m depth contour, Figure 1) for nearshore species such as

yellowfin sole, while the deeper dwelling Greenland turbot were

negatively associated with this area (Figure 2). Pacific cod and great

sculpin each showed comparatively diffuse distributions, with little

strongly positive or negative associations with any particular areas of

the EBS or NBS shelves (a notable exception being a clear negative

association with Norton Sound for both species). Similarly, Pacific

halibut showed generally weak spatial associations throughout the

EBS and NBS but were less common on much of the northern shelf,

particularly around St. Lawrence Island and in Norton Sound. Flathead

sole were positively associated with the southern and outer portions

of the EBS shelf and strongly negatively associated with much of the

NBS. Similarly, yellow Irish lord were positively associated with areas

of the southern, outer EBS shelf and negatively associated with the

NBS, particularly Norton Sound and the Bering Strait. Walleye pollock

showed a strong positive association with the outer and southern

portions of the EBS shelf while Alaska plaice were relatively uncom-

mon in the outer EBS shelf and were positively associated with the

central EBS and NBS.

3.2 | Spatial patterns: WBS

Several notable patterns of species-specific habitat associations

emerged for the WBS subregion. Estimates of ω for the WBS

indicated areas of particularly high walleye pollock densities off Cape

Navarin and the central and outer portions of Anadyr Bay. Greenland

turbot were also strongly positively associated with the deeper waters

in the outer portion of Anadyr Bay and offshore of Cape Navarin and

the Koryak shelf. Flathead sole were relatively rare in the shallow

(0–25m depth contour), inshore areas of Anadyr Bay, with positive

associations in central and outer Anadyr Bay and off Cape Navarin. As

in the EBS, Alaska plaice were relatively uncommon in deeper waters

of the WBS, including the areas offshore of Koryak shelf and the

southwestern margin of the WBS, with areas of above average

density in central Anadyr Bay. Yellowfin sole were also relatively rare

in the deeper, southwestern section of the WBS and weakly positively

associated with the narrow band of shallow, nearshore habitat in

Anadyr Bay. Pacific cod, northern rock sole, and great sculpin showed

moderate positive associations throughout Anadyr Bay and the

Koryak shelf, while yellow Irish lord were strongly positively

associated with the Koryak shelf and the southern WBS. Pacific

halibut showed little positive associations anywhere in the WBS but

were relatively uncommon in the nearshore sections of Anadyr Bay

as well as the western Bering strait and southwest of St. Lawrence

Island.

3.3 | Axes of variability

In addition to species' long-term spatial associations (ω), we simulta-

neously estimated axes of variability that are orthogonal to spatial

patterns and each other. The first axis of variability estimated by EOF

(factor 1) was characterized by low frequency, multidecadal variation

(Figure 3). The loadings for factor 1 steadily increase until 2011, after

which they decline until the end of the study period (2019). The

response maps (ε) associated with factor 1 differed among species but

showed a common theme of positive responses to the north and/or

northwest in several cases (Figure 2). Pollock and cod exhibit this

pattern, with positive phases of factor 1 associated with increases for

both species in the Bering Strait, Anadyr Bay and near the Chukotka

Peninsula, and declines in several areas of the southern outer EBS

shelf and between St. Lawrence and St. Matthew islands. Similarly,

yellowfin sole, northern rock sole, and Alaska plaice all showed strong

positive responses to factor 1 throughout the northern and north-

western shelf, with negative responses in the southern, outer domain

of the EBS shelf. Greenland turbot exhibited an area of positive

responses to factor 1 within and surrounding Anadyr Bay, with

pockets of weakly negative coefficients scattered throughout the

southern outer domain of the EBS shelf and around St. Matthew and

St. Lawrence islands. Pacific halibut showed generally weak responses

to factor 1, with positive coefficients in the northwestern shelf and

negative values on the southern outer domain of the EBS. Great

sculpin also showed generally weak responses to factor 1, with
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F IGURE 2 Long term spatial patterns (ω) and response
maps associated with EOF factors one(ε f½ =1]) and two.
(ε f½ =2]) by species. Teal and brown areas represent
locations of positive and negative coefficient values,
respectively, and a value of 0.1 corresponds to an
approximately 10% increase in n or w relative to the
median value of 0.
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positive coefficient values on the northwestern and southeastern

shelf areas and negative values on the outer domain of the EBS and

between St. Matthew and St. Lawrence islands. Flathead sole showed

declines across a broad area of the eastern shelf near Nunivak,

St. Matthew and St. Lawrence islands, and increases on the Koryak

shelf and the deeper waters off the Chukotka Peninsula in response

to positive loadings of factor 1. Yellow Irish lord showed an area of

negative coefficients for factor 1 between St. Matthew and

St. Lawrence Islands and the outer margin of the EBS shelf, with a

positive response in the westernmost portion of the WBS.

The loadings for the second axis of variability (factor 2) estimated

by EOF analysis varied over periods of approximately 1–3 years in the

early portion of our study period (1988–1999), transitioning to longer

(approximately 5–10 year) stanzas of alternating positive and negative

loadings (Figure 3). Visual examination of the rotated loadings and

simple correlation analysis indicated that factor 2 closely matches

interannual variation in the cold pool extent (ρ¼0:78), with positive

and negative loadings corresponding to years of large and small cold

pool areas respectively (Figure 3). The spatial response maps

associated with factor 2 varied by species but often included negative

coefficients between St. Lawrence and St. Matthew islands (Figure 2),

an area which is typically occupied by the cold pool when it is present.

Both walleye pollock and Pacific cod exhibited this pattern, along with

positive responses on the outer EBS shelf. Yellowfin sole and Alaska

plaice showed negative responses near St. Matthew and St. Lawrence

islands, with positive responses in the inshore areas of the EBS and

NBS, and near the Chukotka Peninsula in the WBS. Pacific halibut

showed negative coefficients in the area surrounding St. Matthew

and St. Lawrence islands in response to factor 2, with weakly positive

coefficients throughout the WBS and Norton Sound. Flathead sole

and yellow Irish lord showed strong positive responses to factor 2 in

Anadyr Bay, with weaker positive responses near St. Lawrence and

the Bering Strait, and negative responses throughout much of the

central EBS shelf. Northern rock sole showed positive responses to

factor 2 on the outer EBS and WBS shelves, with negative responses

in the middle and northern shelf areas. Greenland turbot showed

areas of positive responses to factor 2 throughout the outer EBS and

WBS shelves, as well as surrounding St. Lawrence Island, with an area

of negative responses near St. Matthew and Nunivak islands. Great

sculpin showed an area of negative response to factor 2 between

St. Lawrence and St. Matthew islands and positive coefficients

surrounding this area to the east and west.

3.4 | Spatially-varying cold pool effect

Similar to the response map for the second EOF factor, the SVCs for

cold pool extent were often negative between St. Matthew and

St. Lawrence islands (Figure 4), indicating that larger cold pool area

was associated with reduced biomass in this area. The coefficient

maps and PVE by the cold pool differed substantially among species

(Table 1). The cold pool covariate explained the most total spatiotem-

poral variation for Pacific cod (12.0%), and larger cold pool area was

associated with declines around St. Matthew Island for both numbers

density and average biomass, as well as increases in average biomass

on the southern and outer EBS shelf and parts of the Koryak shelf and

Anadyr Bay. (Figure 4). Larger cold pool area was associated with

declines in both numbers density and average biomass around

St. Matthew Island for walleye pollock and increases in average

biomass on the outer EBS shelf and parts of Anadyr Bay and the

Koryak shelf. Northern rock sole showed a similar spatial response to

the cold pool, with both numbers density and average biomass declin-

ing around St. Matthew Island, and average biomass increasing on the

southern and outer EBS shelf, as well as in Anadyr Bay. Flathead sole

numbers responded negatively to increases in cold pool extent over a

relatively large area, particularly around St. Matthew Island and the

southern interior of the EBS, while Pacific halibut numbers declined

most substantially surrounding and to the east of St. Matthew Island.

The cold pool covariate explained comparatively little total

F IGURE 3 Factor loadings over time. The annual loadings
associated with each factor are plotted as brown bars, while the
rotated loadings are plotted as brown dots and connected lines. The
rotated loadings of the second factor are plotted against the cold pool
index (blue) and the Spearman's correlation coefficient (ρ) between
these indices is reported in the lower left corner of the panel. The
cold pool index is z-scored such that the index values represent the
number of standard deviations from the mean.
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spatiotemporal variation (<4%) for the other species included in our

study (Table 1). It is worth noting that for pollock, cod, and northern

rock sole, the cold pool explained more variation for average biomass

than numbers density while the opposite was true for flathead sole

and Pacific halibut (Table 1).

3.5 | Range shift metrics

Estimates of center of gravity over time indicated northward shifts for

several groundfish species. Pacific cod began to show signs of north-

ward movement in 2003, reaching a maximum latitude of 61.8 in

2018 (Figure 5). This shift is evident in the distribution of cod biomass

density over time as an increase in the Bering Strait and Anadyr Bay

(Figure 6). Center of gravity for pollock shows an abrupt shift to the

north from 1994 to 1998, followed by a steady northward trend from

2000 to 2019. Similar to cod, northward movement of pollock

appears as an increase in biomass density in the Bering Strait and

Anadyr Bay over time (Figure 6). Alaska plaice began steadily moving

northward relatively early in 1990, reaching a maximum latitude of

61.2 in 2004, and oscillating around a mean latitude of 60.5 from

2004 to 2019. The distribution of biomass density for plaice over time

suggests that this northward shift included movements towards

central Anadyr Bay and north of St. Lawrence Island (Figure 6). Other

species do not show as clear evidence of sustained northward trends

or show northward shifts of lower magnitude. For instance, the center

of gravity for northern rock sole consistently moved northward from

1982 to 1998, after which it began to shift south from 1999 to 2010,

and then north again from 2011 to 2019 (Figure 5). Greenland turbot,

Pacific halibut, and flathead sole each exhibited northward trends in

their center of gravity during our study period, although of a lesser

degree than cod, pollock, and plaice (Figure 5). Northward movements

for Pacific halibut appear as a gradual increase in biomass density over

time in an area southwest of St. Lawrence Island that this species has

historically avoided (Figure 6). Longitudinal trends were much less

common, and the magnitude of such movements was generally lower

than latitudinal shifts (Figure 5).

4 | DISCUSSION

We used exploratory EOF of combined US–Russian fisheries-

independent survey data to identify two axes of variability for a

Bering Sea groundfish assemblage. The first factor was characterized

by low-frequency variation and increased steadily from 1988 to 2011

and then declined moderately until 2019. Species responses to factor

F IGURE 4 Estimated spatially varying coefficient values for the
cold pool extent covariate. The first column shows the estimated
effect of cold pool extent on the first linear predictor (numbers
density, n) and the second column shows effects for the second linear
predictor (biomass per individual, w).
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1 were variable but often included increases in northern and/or north-

western areas of the shelf. Additional evidence of such decadal-scale

northward distribution shifts was found in estimates of species' center

of gravity, which indicated long-term trends towards higher latitudes

for several species, particularly Pacific cod, walleye pollock, Alaska

plaice, and to a lesser extent, northern rock sole, Pacific halibut,

flathead sole, and Greenland turbot. Factor 2 was characterized by

interannual variation from 1988 to 1999, followed by alternating

stanzas of positive and negative loadings from 2000 to 2019. This

second factor was coherent with the measured cold pool extent, and

several species' responses were negative in the northern and middle

shelf, areas where the cold pool is often present. These results

suggest that dominant spatiotemporal patterns for the Bering Sea

groundfishes at the shelf-wide scale include short-term responses to

cold pool size and lower frequency variation associated with north-

ward movements over multidecadal time scales.

The leading axis of variability identified by EOF was characterized

by lower frequency variation that generally increased gradually from

1988 to 2011 and then weakened until 2019. Species responses to

this first factor were variable but often included a component of

northward movement. This result is not necessarily surprising, as sev-

eral studies have documented northward distribution shifts in the

Bering Sea for several of the species included in this study

(Kotwicki & Lauth, 2013; Stevenson & Lauth, 2019; Vestfals

et al., 2016). However, such shifts are often attributed to declines in

the size of the cold pool, which acts as a barrier to northward

migration (Mueter & Litzow, 2008; but see Kotwicki & Lauth, 2013).

Conversely, EOF estimated the northward movements associated

with the first factor separately from those associated with variation in

the cold pool extent, which were represented in the second axis of

variability. There are several possible explanations for this result;

while cool pool size is an important proximate control of northward

migrations, other factors may also contribute to such movements. For

instance, cold pool area is correlated with, but not necessarily entirely

dependent on, temperature (Thorson, 2019). Indeed, wind and ocean

circulation patterns can also affect the size and distribution of the cold

pool independently of temperature (Duffy-Anderson et al., 2017). As

such, factor 1 may represent climate-mediated effects on species

distribution that are driven by long-term temperature trends not

captured in measurements of cold pool area. Similar to our findings,

Kotwicki and Lauth (2013) demonstrated that the most important

variable explaining northward distribution shifts for groundfish and

crab species in the EBS was a ‘time lag’ effect, representing a long-

term temporal trend in species distributions, followed by the effect of

cold pool area. Those authors noted that variation in species distribu-

tion over time exhibited a northward trend over the 30-year

time-series examined while the cold pool fluctuated over shorter

time-scales with no indication of a long-term shift. Kotwicki and Lauth

(2013) thus concluded that the cold pool could not be solely responsi-

ble for the observed distribution shifts. Similarly, Litzow (2017)

demonstrated that community-wide patterns of recruitment and spe-

cies distributions initiated during a prolonged warming period failed to

reverse in a subsequent cold stanza, indicating longer term ecosystem

shifts not responsive to transient environmental fluctuations. The first

factor estimated by our EOF analysis exhibits clear temporal autocor-

relation and sustained, low-frequency variation, and may thus be

capturing similar dynamics as reported by Kotwicki and Lauth (2013)

and Litzow (2017). Indeed, our center of gravity estimates for several

species indicated directional trends towards the north, while long-

term trends do not appear in the measured cold pool extent. In

explaining these northward trends, Kotwicki and Lauth (2013) cited

several possible drivers, such as patterns in primary production and in

situ light conditions, and greater fishing pressure in the southern EBS

due to closer proximity to Dutch Harbor, the area's primary fishing

port. In addition to fishing pressure, additional top-down drivers such

as predation due to increases in arrowtooth flounder densities on the

EBS shelf (Zador et al., 2011) and northern fur seal colonization of

Bogosloff Island in the 1980s (Loughlin & Miller, 1989) may also be

contributing to northward trends in groundfish distributions. Without

knowing the mechanism(s) responsible for creating the dynamics indi-

cated by factor 1, it is difficult to interpret the decline in the loadings

for this factor from 2011 to 2019. However, this period of relaxation

TABLE 1 Percent variance explained (PVE) by the cold pool extent covariate by species for numbers density (linear predictor 1), biomass per
individual (linear predictor 2) and combined across both linear predictors.

Species Numbers density PVE (%) Biomass per individual PVE (%) Combined PVE (%) Percent deviance explained (%)

Greenland turbot 1.98 3.84 3.11 66

Pacific halibut 10.35 4.85 7.27 47

Flathead sole 7.5 3.0 7.24 72

Yellowfin sole 0.67 5.15 1.85 81

Northern rock sole 4.6 9.0 8.67 72

Alaska plaice 2.82 4.85 3.78 72

Yellow Irish lord 1.15 0 0.10 62

Great sculpin 3.55 2.22 3.34 52

Pacific cod 6.83 12.27 11.98 61

Walleye pollock 3.76 9.38 8.45 62

Note: Additionally, the percent deviance explained by the entire model, including covariates, is presented in the far right column.
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in factor 1's loadings coincides roughly with a period of steep decline

in cold pool area due to sea ice loss (Figure 3), which led to

pronounced changes in the Bering Sea ecosystem (Duffy-Anderson

et al., 2017; Duffy-Anderson et al., 2019; Stabeno & Bell, 2019). As

such, the weakened loadings for factor 1 during this period may repre-

sent the influence of unprecedented declines in sea ice and cold pool

F IGURE 5 Estimated centers of gravity by
latitude (right column) and longitude (left column) for
each species over time. Shaded boundaries represent
the standard errors associated with estimates.
Dashed horizontal lines represent the first value
associated with each estimate, and dotted lines
represent the mean center of gravity estimate across
the entire study period (1982–2019).
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area effectively overriding other mechanisms (i.e., factor 1) that had

been shaping variation in species distributions. Whatever the causes,

it is evident that there is a low-frequency, multidecadal component to

groundfish movements in the Bering Sea that is not explained by the

cold pool and should be accounted for in modeling and predicting

species distributions shifts.

Given its well-documented importance in the Bering Sea, it is not

surprising that cold pool area corresponded to the second axis of

F IGURE 6 Spatial
distribution of log biomass
density in kilograms per
kilometer (log [kg/km2]) by
species over time. The
distribution of log biomass
density for species in years
1982, 1989, 1996, 2003, 2010,
and 2017 is shown in each

column.
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variation we identified. Indeed, spatial coefficients associated with

both factor 2 (exploratory EOF) and the cold pool covariate (SVC

models) were characteristic of previously described responses of

some species to variation in cold pool extent in the EBS and NBS

(e.g., avoidance of the northern and central EBS and NBS to varying

extents) (Ciannelli & Bailey, 2005; Mueter & Litzow, 2008;

Thorson, 2019; Thorson, Ciannelli, & Litzow, 2020). Species responses

to variation in the cold pool for the WBS were often negative west of

St. Lawrence Island and in nearshore sections of Anadyr Bay—areas

where the cold pool can extend to in the WBS (Eisner et al., 2020;

Kearney et al., 2020)—and positive in central and outer Anadyr Bay

and the southwestern WBS. Our results support those reported by

Eisner et al. (2020) for pollock, which showed that in warm years with

smaller cold pool extent, WBS pollock moved northeastward, and EBS

pollock moved northwestward, resulting in similar distributions north

of St. Lawrence Island. Our results show that other species show a

similar spatial response to the cold pool (e.g., cod) and may thus also

undergo similar patterns of stock overlap. The importance of the cold

pool for shaping the distributions of large mobile species such as

pollock and cod has been documented extensively (e.g., Kotwicki

et al., 2005; Stevenson & Lauth, 2019; Thorson, 2019). However, our

analysis indicates comparably large effects for Pacific halibut, northern

rock sole, and flathead sole. Moreover, while yellowfin sole are known

to exhibit temperature-mediated variation in the phenology of spawn-

ing migrations (Nichol et al., 2019), the estimated effect of the cold

pool for this species was relatively small. Not surprisingly, the effects

of the cold pool were minor for great sculpin and yellow Irish lord,

which are not known to migrate extensively.

This study has several limitations that warrant consideration.

While we accounted for differences in sampling efficiency between

the AFSC and TINRO surveys in our modeling approach, it is possible

that other differences between these disparate data sources

(e.g., survey timing and tow duration) could create spurious patterns

not corrected by the catchability covariates. However, we note that a

similar multispecies EOF analysis limited to the EBS identified axes of

variability similar to those described here (Thorson, Ciannelli, &

Litzow, 2020), suggesting that incongruences between data sources

did not qualitatively affect our results. Our study also did not account

for population age and size structure, which can affect both distribu-

tional patterns and catchability. For instance, habitat use may be

spatially constrained to varying degrees across the life cycle (Ciannelli

et al., 2015, 2022), such that some age classes may be more likely to

undergo climate-mediated movements (e.g., O'Leary et al., 2020).

Thus, aggregating across age classes in our analyses may have

obscured ontogenetic patterns in spatial and spatiotemporal variation.

Similarly, while we estimated catchability ratios between the AFSC

and TINRO surveys by species, interspecific variation in relative catch-

ability is likely driven at least partially by size (O'Leary et al., 2021),

and thus may vary intraspecifically with age as well. However, we

note that due to the multispecies nature of our EOF analysis, including

age and size structure would have been computationally infeasible.

Our study also assumed a homogeneous population structure for each

species, while in reality, there may be multiple stocks associated with

discrete spawning grounds (e.g., Ianelli et al., 2003) and potential dif-

ferentiation between shelf areas. While our data were collected in

summer and thus lack information on individuals' association with a

given spawning population, future tagging and genetic studies

(e.g., Spies et al., 2020) would be useful to clarify how population

structure may interact with distributional patterns. Finally, it should

be noted that the standard errors associated with parts of the EOF

response maps described here were substantial (Figure S2), although

we corroborated the outcomes of our EOF analysis to some degree

via the SVC models and range shift metrics.

As climate-mediated distribution shifts intensify, political cooper-

ation and sharing of survey data can be useful towards understanding

how transboundary stocks respond to ecosystem forcing at broader

scales, beyond the purview of individual nations. Here, we demon-

strate how existing methods for combining fisheries-independent

survey data can be leveraged to generate inference on key patterns of

variation in species distributions over time via EOF analysis. While our

findings are qualitatively similar to a previous EOF analysis limited to

the EBS, our inclusion of the NBS and WBS generated novel insights

into how species respond to leading axes of variability at a shelf-wide

scale. Areas with strong responses to the factors we identified often

spanned the US–Russian border, highlighting the shelf-wide

coherence of species' responses to ecosystem change. For instance,

our analysis demonstrated that some species (e.g., cod and Pollock)

show a strong response to reduced cold pool area near the Bering

Strait on both US and Russian portions of the shelf. Moreover, given

that most of the WBS occurs further north than the EBS, at a similar

latitude as the NBS, data from the WBS offers useful insights into

characterizing northward distribution shifts. While combining

fisheries-independent data from multiple nations' surveys presents

both political and analytical challenges, the benefits can be substantial

for monitoring and assessment, as well as process-level inferences on

species responses to ecosystem change.

Our study identified low-frequency variation often characterized

by northward movements, but not associated with cold pool extent,

as the leading axis of variation in Bering Sea groundfish distributions

over time. While large fluctuations in cold pool area have been associ-

ated with conspicuous northward migrations, our findings suggest the

co-occurrence of more subtle but persistent northward movements

that are less responsive to transient environmental variation, similar

to results reported by Kotwicki and Lauth (2013). These results have

applications for understanding and predicting species' responses to

changing ecosystem conditions. While the cold pool is often viewed

as the most important control of northward movements for Bering

Sea groundfishes (e.g., Mueter & Litzow, 2008), our study supports

Kotwicki and Lauth's (2013) findings that there is another component

to such migrations that is not associated with variation in cold pool

size. As such, forecasts of species distribution shifts should consider

these two patterns operating concurrently across different time

scales, as predictions based solely on responses to cold pool size alone

may overlook an important component of species movements. Future

research identifying the variable(s) responsible for the variation exhib-

ited by factor 1 may further illuminate the mechanisms controlling
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shifts in species distributions in the Bering Sea. However, we note

that the first EOF axis appears to exhibit distinct autocorrelation,

suggesting that it could be usable for short-term forecasts of species

distributions even without identifying causal mechanisms.

Alternatively, research could identify changes in community structure

(i.e., local diversity or predator–prey overlap) associated with positive

versus negative phases of the first EOF axis. If these consequences

are identified, then it could be useful to include the estimated index

itself as an indicator in the eastern Bering Sea Ecosystem Status

Report (Siddon, 2022). Collectively, our results emphasize the impor-

tance of considering patterns of variation in species distributions

across broader spatial scales and demonstrate the utility of EOF

applied to combined survey datasets for expanding the spatial scope

of process-oriented research.

AUTHOR CONTRIBUTIONS

Stan Kotwicki, James Thorson, Jerry Hoff, Vladimir Kulik, Andre Punt,

Cecilia O'Leary, Lukas DeFilippo, and James Ianelli conceived the

study. Lukas DeFilippo conducted the analyses and wrote the paper.

All authors contributed to interpreting results and writing the

manuscript.

ACKNOWLEDGMENTS

This research was funded by the North Pacific Research Board (Grant

#1805). We thank the many scientific and commercial fishing staff

who have contributed to planning and executing surveys in the Bering

Sea, and in particular Lyle Britt and Duane Stevenson for their leader-

ship of the eastern Bering Sea team in the NOAA AFSC Groundfish

Assessment Program. We would also like to thank M. Stepanenko for

their work in the international surveys and I. Glebov and A. Savin for

their leadership in coordinating the Russian survey programs. We

would also like to thank Sean Rohan, Michael Martin, and Mike Litzow

for helpful comments on earlier drafts that improved this manuscript.

The scientific results and conclusions, as well as any views or opinions

expressed herein, are those of the author(s) and do not necessarily

reflect those of NOAA or the US Department of Commerce.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

NOAA data are available online (https://www.fisheries.noaa.gov/

alaska/commercial-fishing/alaska-groundfish-bottom-trawl-survey-

data#northern-bering-sea-shelf). All TINRO data are property of the

Russian Federation and should be requested through the Federal

Agency for Fishery (http://government.ru/en/department/243/) and

VNIRO (http://vniro.ru/en/about-vniro/contacts).

ORCID

Cecilia A. O'Leary https://orcid.org/0000-0002-1737-9294

Stan Kotwicki https://orcid.org/0000-0002-6112-5021

Vladimir V. Kulik https://orcid.org/0000-0003-0920-5312

REFERENCES

Aydin, K., & Mueter, F. (2007). The Bering Sea—A dynamic food web

perspective. Deep Sea Research Part II: Topical Studies in Oceanography,

54(23–26), 2501–2525.
Baker, M. R. (2021). Contrast of warm and cold phases in the Bering Sea

to understand spatial distributions of Arctic and sub-Arctic gadids.

Polar Biology, 44(6), 1083–1105. https://doi.org/10.1007/s00300-

021-02856-x

Ciannelli, L., & Bailey, K. M. (2005). Landscape dynamics and resulting

species interactions: The cod–capelin system in the southeastern

Bering Sea. Marine Ecology Progress Series, 291, 227–236. https://doi.
org/10.3354/meps291227

Ciannelli, L., Bailey, K., & Olsen, E. M. (2015). Evolutionary and ecological

constraints of fish spawning habitats. ICES Journal of Marine Science,

72(2), 285–296.
Ciannelli, L., Neuheimer, A. B., Stige, L. C., Frank, K. T., Durant, J. M.,

Hunsicker, M., Rogers, L. A., Porter, S., Ottersen, G., & Yaragina, N. A.

(2022). Ontogenetic spatial constraints of sub-arctic marine fish

species. Fish and Fisheries, 23(2), 342–357.
Coachman, L. K. (1986). Circulation, water masses, and fluxes on the

southeastern Bering Sea shelf. Continental Shelf Research, 5(1–2),
23–108. https://doi.org/10.1016/0278-4343(86)90011-7

Coyle, K. O., Eisner, L. B., Mueter, F. J., Pinchuk, A. I., Janout, M. A.,

Cieciel, K. D., … Andrews, A. G. (2011). Climate change in the

southeastern Bering Sea: Impacts on pollock stocks and implications

for the oscillating control hypothesis. Fisheries Oceanography, 20(2),

139–156. https://doi.org/10.1111/j.1365-2419.2011.00574.x
Currie, J. C., Thorson, J. T., Sink, K. J., Atkinson, L. J., Fairweather, T. P., &

Winker, H. (2019). A novel approach to assess distribution trends from

fisheries survey data. Fisheries Research, 214, 98–109. https://doi.org/
10.1016/j.fishres.2019.02.004

Danielson, S., Curchitser, E., Hedstrom, K., Weingartner, T., & Stabeno, P.

(2011). On ocean and sea ice modes of variability in the Bering Sea.

Journal of Geophysical Research, Oceans, 116(C12), C12034. https://

doi.org/10.1029/2011JC007389

De Robertis, A., & Cokelet, E. D. (2012). Distribution of fish and

macrozooplankton in ice-covered and open-water areas of the eastern

Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography,

65, 217–229. https://doi.org/10.1016/j.dsr2.2012.02.005
Duffy-Anderson, J. T., Stabeno, P. J., Siddon, E. C., Andrews, A. G.,

Cooper, D. W., Eisner, L. B., Farley, E. V., Harpold, C. E., Heintz, R. A.,

Kimmel, D. G., Sewall, F. F., Spear, A. H., & Yasumishii, E. C. (2017).

Return of warm conditions in the southeastern Bering Sea:

Phytoplankton–fish. PLoS ONE, 12(6), e0178955. https://doi.org/10.

1371/journal.pone.0178955

Duffy-Anderson, J. T., Stabeno, P., Andrews, A. G. III, Cieciel, K., Deary, A.,

Farley, E., Fugate, C., Harpold, C., Heintz, R., Kimmel, D., Kuletz, K.,

Lamb, J., Paquin, M., Porter, S., Rogers, L., Spear, A., & Yasumiishi, E.

(2019). Responses of the northern Bering Sea and southeastern Bering

Sea pelagic ecosystems following record-breaking low winter sea ice.

Geophysical Research Letters, 46(16), 9833–9842. https://doi.org/10.
1029/2019GL083396

Eisner, L. B., Zuenko, Y. I., Basyuk, E. O., Britt, L. L., Duffy-Anderson, J. T.,

Kotwicki, S., Ladd, C., & Cheng, W. (2020). Environmental impacts

on walleye pollock (Gadus chalcogrammus) distribution across the

Bering Sea shelf. Deep Sea Research Part II: Topical Studies in

Oceanography, 181-182, 104881. https://doi.org/10.1016/j.dsr2.

2020.104881

Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Magnusson, A.,

Maunder, M. N., Nielsen, A., & Sibert, J. (2012). AD model builder:

Using automatic differentiation for statistical inference of highly

parameterized complex nonlinear models. Optimization Methods and

Software, 27(2), 233–249. https://doi.org/10.1080/10556788.2011.

597854

DEFILIPPO ET AL. 15

https://www.fisheries.noaa.gov/alaska/commercial-fishing/alaska-groundfish-bottom-trawl-survey-data#northern-bering-sea-shelf
https://www.fisheries.noaa.gov/alaska/commercial-fishing/alaska-groundfish-bottom-trawl-survey-data#northern-bering-sea-shelf
https://www.fisheries.noaa.gov/alaska/commercial-fishing/alaska-groundfish-bottom-trawl-survey-data#northern-bering-sea-shelf
http://government.ru/en/department/243/
http://vniro.ru/en/about-vniro/contacts
https://orcid.org/0000-0002-1737-9294
https://orcid.org/0000-0002-1737-9294
https://orcid.org/0000-0002-6112-5021
https://orcid.org/0000-0002-6112-5021
https://orcid.org/0000-0003-0920-5312
https://orcid.org/0000-0003-0920-5312
https://doi.org/10.1007/s00300-021-02856-x
https://doi.org/10.1007/s00300-021-02856-x
https://doi.org/10.3354/meps291227
https://doi.org/10.3354/meps291227
https://doi.org/10.1016/0278-4343(86)90011-7
https://doi.org/10.1111/j.1365-2419.2011.00574.x
https://doi.org/10.1016/j.fishres.2019.02.004
https://doi.org/10.1016/j.fishres.2019.02.004
https://doi.org/10.1029/2011JC007389
https://doi.org/10.1029/2011JC007389
https://doi.org/10.1016/j.dsr2.2012.02.005
https://doi.org/10.1371/journal.pone.0178955
https://doi.org/10.1371/journal.pone.0178955
https://doi.org/10.1029/2019GL083396
https://doi.org/10.1029/2019GL083396
https://doi.org/10.1016/j.dsr2.2020.104881
https://doi.org/10.1016/j.dsr2.2020.104881
https://doi.org/10.1080/10556788.2011.597854
https://doi.org/10.1080/10556788.2011.597854


Grimmer, M. (1963). The space-filtering of monthly surface temperature

anomaly data in terms of pattern, using empirical orthogonal functions.

Quarterly Journal of the Royal Meteorological Society, 89(381),

395–408. https://doi.org/10.1002/qj.49708938111
Grüss, A., Thorson, J. T., Carroll, G., Ng, E. L., Holsman, K. K., Aydin, K., …

Thompson, K. A. (2020). Spatio-temporal analyses of marine predator

diets from data-rich and data-limited systems. Fish and Fisheries, 21(4),

718–739. https://doi.org/10.1111/faf.12457
Grüss, A., Thorson, J. T., Stawitz, C. C., Reum, J. C., Rohan, S. K., &

Barnes, C. L. (2021). Synthesis of interannual variability in spatial

demographic processes supports the strong influence of cold-pool

extent on eastern Bering sea walleye pollock (Gadus chalcogrammus).

Progress in Oceanography, 194, 102569. https://doi.org/10.1016/j.

pocean.2021.102569

Hartig, F. (2022). DHARMa: Residual diagnostics for hierarchical (multi-level/-

mixed) regression models. R package version 0.4.5. https://CRAN.R-

project.org/package=DHARMa

Hollowed, A. B., Barbeaux, S. J., Cokelet, E. D., Farley, E., Kotwicki, S.,

Ressler, P. H., Spital, C., & Wilson, C. D. (2012). Effects of climate

variations on pelagic ocean habitats and their role in structuring forage

fish distributions in the Bering Sea. Deep Sea Research Part II: Topical

Studies in Oceanography, 65, 230–250. https://doi.org/10.1016/j.dsr2.
2012.02.008

Holsman, K. K., Ianelli, J., Aydin, K., Punt, A. E., & Moffitt, E. A. (2016). A

comparison of fisheries biological reference points estimated from

temperature-specific multi-species and single-species climate-

enhanced stock assessment models. Deep Sea Research Part II: Topical

Studies in Oceanography, 134, 360–378. https://doi.org/10.1016/j.

dsr2.2015.08.001

Hunt, G. L. Jr., Coyle, K. O., Eisner, L. B., Farley, E. V., Heintz, R. A.,

Mueter, F., Napp, J. M., Overland, J. E., Ressler, P. H., Salo, S., &

Stabeno, P. J. (2011). Climate impacts on eastern Bering Sea food-

webs: A synthesis of new data and an assessment of the oscillating

control hypothesis. ICES Journal of Marine Science, 68(6), 1230–1243.
https://doi.org/10.1093/icesjms/fsr036

Ianelli, J. N., Barbeaux, S., Walters, G., & Williamson, N. (2003). Eastern

Bering Sea walleye pollock stock assessment. In Stock assessment and

fishery evaluation report for the groundfish resources of the Bering

Sea/Aleutian Islands regions (p. 605). North Pacific Fishery Manage-

ment Council.

Karp, M. A., Peterson, J. O., Lynch, P. D., Griffis, R. B., Adams, C. F.,

Arnold, W. S., Barnett, L. A., deReynier, Y., DiCosimo, J.,

Fenske, K. H., & Gaichas, S. K. (2019). Accounting for shifting

distributions and changing productivity in the development of

scientific advice for fishery management. ICES Journal of

Marine Science, 76(5), 1305–1315. https://doi.org/10.1093/icesjms/

fsz048

Kearney, K., Hermann, A., Cheng, W., Ortiz, I., & Aydin, K. (2020). A

coupled pelagic–benthic–sympagic biogeochemical model for the

Bering Sea: Documentation and validation of the BESTNPZ model

(v2019. 08.23) within a high-resolution regional ocean model.

Geoscientific Model Development, 13(2), 597–650. https://doi.org/10.
5194/gmd-13-597-2020

Kidson, J. W. (1975). Tropical eigenvector analysis and the southern

oscillation. Monthly Weather Review, 103(3), 187–196. https://doi.org/
10.1175/1520-0493(1975)103<0187:TEAATS>2.0.CO;2

Kinder, T. H., & Schumacher, J. D. (1981). Hydrographic structure. The

eastern Bering Sea shelf: Oceanography and resources (Vol. 1, p. 31).

Kotwicki, S., & Lauth, R. R. (2013). Detecting temporal trends and

environmentally-driven changes in the spatial distribution of bottom

fishes and crabs on the eastern Bering Sea shelf. Deep Sea Research

Part II: Topical Studies in Oceanography, 94, 231–243. https://doi.org/
10.1016/j.dsr2.2013.03.017

Kotwicki, S., Buckley, T. W., Honkalehto, T., & Walters, G. (2005). Variation

in the distribution of walleye pollock (Theragra chalcogramma) with

temperature and implications for seasonal migration. Fishery Bulletin,

103, 574–587.
Kristensen, K., Bell, B., & Skaug, H. (2020). Template model builder:

A general random effect tool inspired by ‘ADMB’.
Lauth, R. R., Dawson, E. J., & Conner, J. (2019). Results of the 2017 east-

ern and northern Bering Sea continental shelf bottom trawl survey of

groundfish and invertebrate fauna. National Marine Fisheries Service,

1–265.
Link, J. S., Nye, J. A., & Hare, J. A. (2011). Guidelines for incorporating fish

distribution shifts into a fisheries management context. Fish and Fisher-

ies, 12(4), 461–469. https://doi.org/10.1111/j.1467-2979.2010.

00398.x

Litzow, M. A. (2017). Indications of hysteresis and early warning signals of

reduced community resilience during a Bering Sea cold anomaly.

Marine Ecology Progress Series, 571, 13–28. https://doi.org/10.3354/
meps12137

Loughlin, T. R., & Miller, R. V. (1989). Growth of the northern fur seal col-

ony on Bogoslof Island, Alaska. Arctic, 42, 368–372. https://doi.org/
10.14430/arctic1680

Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997).

A Pacific interdecadal climate oscillation with impacts on Salmon pro-

duction. Bulletin of the American Meteorological Society, 78, 1069–
1079. https://doi.org/10.1175/1520-0477(1997)078<1069:

APICOW>2.0.CO;2

Maureaud, A., Frelat, R., Pécuchet, L., Shackell, N., Mérigot, B.,

Pinsky, M. L., … Thorson, J. T. (2021). Are we ready to track climate-

driven shifts in marine species across international boundaries?—A

global survey of scientific bottom trawl data. Global Change Biology,

27(2), 220–236.
McGowan, J. A., Cayan, D. R., & Dorman, L. M. (1998). Climate-ocean vari-

ability and ecosystem response in the Northeast Pacific. Science,

281(5374), 210–217. https://doi.org/10.1126/science.281.5374.210
Moriarty, M., Sethi, S. A., Pedreschi, D., Smeltz, T. S., McGonigle, C.,

Harris, B. P., Wolf, N., & Greenstreet, S. P. R. (2020). Combining fisher-

ies surveys to inform marine species distribution modeling. ICES Jour-

nal of Marine Science, 77, 539–552. https://doi.org/10.1093/icesjms/

fsz254

Mueter, F. J., & Litzow, M. A. (2008). Sea ice retreat alters the biogeogra-

phy of the Bering Sea continental shelf. Ecological Applications, 18(2),

309–320. https://doi.org/10.1890/07-0564.1
Mueter, F. J., Ladd, C., Palmer, M. C., & Norcross, B. L. (2006). Bottom-up

and top-down controls of walleye pollock (Theragra chalcogramma) on

the Eastern Bering Sea shelf. Progress in Oceanography, 68(2–4), 152–
183. https://doi.org/10.1016/j.pocean.2006.02.012

Nichol, D. G., Kotwicki, S., Wilderbuer, T. K., Lauth, R. R., & Ianelli, J. N.

(2019). Availability of yellowfin sole Limanda aspera to the eastern

Bering Sea trawl survey and its effect on estimates of survey biomass.

Fisheries Research, 211, 319–330. https://doi.org/10.1016/j.fishres.

2018.11.017

Nye, J. A., Link, J. S., Hare, J. A., & Overholtz, W. J. (2009). Changing spatial

distribution of fish stocks in relation to climate and population size on

the Northeast United States continental shelf. Marine Ecology Progress

Series, 393, 111–129. https://doi.org/10.3354/meps08220

O'Leary, C. A., DeFilippo, L. B., Thorson, J. T., Kotwicki, S., Hoff, G. R.,

Kulik, V. V., Ianelli, J. N., & Punt, A. E. (2022). Understanding trans-

boundary stocks’ availability by combining multiple fisheries-

independent surveys and oceanographic conditions in spatiotemporal

models. ICES Journal of Marine Science, 79(4), 1063–1074.
O'Leary, C. A., Kotwicki, S., Hoff, G. R., Thorson, J. T., Kulik, V. V.,

Ianelli, J. N., Lauth, R. R., Nichol, D. G., Conner, J., & Punt, A. E. (2021).

Estimating spatiotemporal availability of transboundary fishes to

fishery-independent surveys. Journal of Applied Ecology, 58(10), 2146–
2157. https://doi.org/10.1111/1365-2664.13914

O'Leary, C. A., Thorson, J. T., Ianelli, J. N., & Kotwicki, S. (2020). Adapting

to climate-driven distribution shifts using model-based indices and age

16 DEFILIPPO ET AL.

https://doi.org/10.1002/qj.49708938111
https://doi.org/10.1111/faf.12457
https://doi.org/10.1016/j.pocean.2021.102569
https://doi.org/10.1016/j.pocean.2021.102569
https://CRAN.R-project.org/package=DHARMa
https://CRAN.R-project.org/package=DHARMa
https://doi.org/10.1016/j.dsr2.2012.02.008
https://doi.org/10.1016/j.dsr2.2012.02.008
https://doi.org/10.1016/j.dsr2.2015.08.001
https://doi.org/10.1016/j.dsr2.2015.08.001
https://doi.org/10.1093/icesjms/fsr036
https://doi.org/10.1093/icesjms/fsz048
https://doi.org/10.1093/icesjms/fsz048
https://doi.org/10.5194/gmd-13-597-2020
https://doi.org/10.5194/gmd-13-597-2020
https://doi.org/10.1175/1520-0493(1975)103%3C0187:TEAATS%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1975)103%3C0187:TEAATS%3E2.0.CO;2
https://doi.org/10.1016/j.dsr2.2013.03.017
https://doi.org/10.1016/j.dsr2.2013.03.017
https://doi.org/10.1111/j.1467-2979.2010.00398.x
https://doi.org/10.1111/j.1467-2979.2010.00398.x
https://doi.org/10.3354/meps12137
https://doi.org/10.3354/meps12137
https://doi.org/10.14430/arctic1680
https://doi.org/10.14430/arctic1680
https://doi.org/10.1175/1520-0477(1997)078%3C1069:APICOW%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078%3C1069:APICOW%3E2.0.CO;2
https://doi.org/10.1126/science.281.5374.210
https://doi.org/10.1093/icesjms/fsz254
https://doi.org/10.1093/icesjms/fsz254
https://doi.org/10.1890/07-0564.1
https://doi.org/10.1016/j.pocean.2006.02.012
https://doi.org/10.1016/j.fishres.2018.11.017
https://doi.org/10.1016/j.fishres.2018.11.017
https://doi.org/10.3354/meps08220
https://doi.org/10.1111/1365-2664.13914


composition from multiple surveys in the walleye pollock (Gadus chal-

cogrammus) stock assessment. Fisheries Oceanography, 29(6), 541–557.
https://doi.org/10.1111/fog.12494

Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate

change and distribution shifts in marine fishes. Science, 308(5730),

1912–1915. https://doi.org/10.1126/science.1111322
Pinsky, M. L., Reygondeau, G., Caddell, R., Palacios-Abrantes, J.,

Spijkers, J., & Cheung, W. W. (2018). Preparing ocean governance for

species on the move. Science, 360(6394), 1189–1191. https://doi.org/
10.1126/science.aat2360

Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., & Levin, S. A.

(2013). Marine taxa track local climate velocities. Science, 341(6151),

1239–1242. https://doi.org/10.1126/science.1239352
R Core Team. R Foundation for Statistical Computing. (2015). R: A lan-

guage and environment for statistical computing. Austria. http://www.R-

project.org

Siddon, E. 2022. Ecosystem status report 2022: Eastern Bering Sea, stock

assessment and fishery evaluation report, North Pacifc Fishery Manage-

ment Council, 1007 West 3rd Ave., Suite 400, Anchorage, Alaska 99501.

Sigler, M. F., Napp, J. M., Stabeno, P. J., Heintz, R. A., Lomas, M. W., &

Hunt, G. L. Jr. (2016). Variation in annual production of copepods,

euphausiids, and juvenile walleye pollock in the southeastern Bering

Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 134,

223–234. https://doi.org/10.1016/j.dsr2.2016.01.003
Skaug, H. J., & Fournier, D. A. (2006). Automatic approximation of the

marginal likelihood in non-Gaussian hierarchical models. Computational

Statistics & Data Analysis, 51(2), 699–709. https://doi.org/10.1016/j.
csda.2006.03.005

Smith, J. A., Buil, M. P., Muhling, B., Tommasi, D., Brodie, S., Frawley, T. H.,

… Jacox, M. G. (2023). Projecting climate change impacts from physics

to fisheries: A view from three California current fisheries. Progress in

Oceanography, 211, 102973. https://doi.org/10.1016/j.pocean.2023.

102973

Smith, J. Q. (1985). Diagnostic checks of non-standard time series models.

Journal of Forecasting, 4(3), 283–291. https://doi.org/10.1002/for.

3980040305

Spies, I., Gruenthal, K. M., Drinan, D. P., Hollowed, A. B., Stevenson, D. E.,

Tarpey, C. M., & Hauser, L. (2020). Genetic evidence of a northward

range expansion in the eastern Bering Sea stock of Pacific cod.

Evolutionary Applications, 13(2), 362–375. https://doi.org/10.1111/

eva.12874

Stabeno, P. J., & Bell, S. W. (2019). Extreme conditions in the Bering Sea

(2017–2018): Record-breaking low sea-ice extent. Geophysical

Research Letters, 46(15), 8952–8959. https://doi.org/10.1029/

2019GL083816

Stabeno, P. J., Bond, N. A., & Salo, S. A. (2007). On the recent warming of

the southeastern Bering Sea shelf. Deep Sea Research Part II: Topical

Studies in Oceanography, 54(23–26), 2599–2618. https://doi.org/10.
1016/j.dsr2.2007.08.023

Stabeno, P. J., Bond, N. A., Kachel, N. B., Salo, S. A., & Schumacher, J. D.

(2001). On the temporal variability of the physical environment over

the south-eastern Bering Sea. Fisheries Oceanography, 10(1), 81–98.
https://doi.org/10.1046/j.1365-2419.2001.00157.x

Stabeno, P. J., Kachel, N. B., Moore, S. E., Napp, J. M., Sigler, M.,

Yamaguchi, A., & Zerbini, A. N. (2012). Comparison of warm and cold

years on the southeastern Bering Sea shelf and some implications for

the ecosystem. Deep Sea Research Part II: Topical Studies in Oceanogra-

phy, 65, 31–45. https://doi.org/10.1016/j.dsr2.2012.02.020
Stabeno, P. J., Kachel, N. B., Sullivan, M., & Whitledge, T. E. (2002).

Variability of physical and chemical characteristics along the 70-m

isobath of the southeastern Bering Sea. Deep Sea Research Part II: Topi-

cal Studies in Oceanography, 49(26), 5931–5943. https://doi.org/10.
1016/S0967-0645(02)00327-2

Stabeno, P., Napp, J., Mordy, C., & Whitledge, T. (2010). Factors

influencing physical structure and lower trophic levels of the eastern

Bering Sea shelf in 2005: Sea ice, tides and winds. Progress in Oceanog-

raphy, 85(3–4), 180–196. https://doi.org/10.1016/j.pocean.2010.

02.010

Stepanenko, M. A., & Gritsay, E. V. (2016). Assessment of stock, spatial

distribution, and recruitment of walleye pollock in the northern and

eastern Bering Sea. Известия ТИНРО, 185, 16–30. https://doi.org/10.
26428/1606-9919-2016-185-16-30

Stevenson, D. E., & Lauth, R. R. (2019). Bottom trawl surveys in the

northern Bering Sea indicate recent shifts in the distribution of marine

species. Polar Biology, 42(2), 407–421. https://doi.org/10.1007/

s00300-018-2431-1

Thorson, J. T. (2018). Three problems with the conventional delta-model

for biomass sampling data, and a computationally efficient alternative.

Canadian Journal of Fisheries and Aquatic Sciences, 75(9). https://doi.

org/10.1139/cjfas-2017-0266

Thorson, J. T. (2019). Measuring the impact of oceanographic indices on

species distribution shifts: The spatially varying effect of cold-pool

extent in the eastern Bering Sea. Limnology and Oceanography, 64(6),

2632–2645. https://doi.org/10.1002/lno.11238
Thorson, J. T., & Barnett, L. A. (2017). Comparing estimates of abundance

trends and distribution shifts using single-and multispecies models of

fishes and biogenic habitat. ICES Journal of Marine Science, 74(5),

1311–1321. https://doi.org/10.1093/icesjms/fsw193

Thorson, J. T., & Kristensen, K. (2016). Implementing a generic method for

bias correction in statistical models using random effects, with spatial

and population dynamics examples. Fisheries Research, 175, 66–74.
https://doi.org/10.1016/j.fishres.2015.11.016

Thorson, J. T., Arimitsu, M. L., Barnett, L. A., Cheng, W., Eisner, L. B.,

Haynie, A. C., Hermann, A. J., Holsman, K., Kimmel, D. G.,

Lomas, M. W., Richar, J., & Siddon, E. C. (2021). Forecasting commu-

nity reassembly using climate-linked spatio-temporal ecosystem

models. Ecography, 44(4), 612–625. https://doi.org/10.1111/ecog.

05471

Thorson, J. T., Cheng, W., Hermann, A. J., Ianelli, J. N., Litzow, M. A.,

O'Leary, C. A., & Thompson, G. G. (2020). Empirical orthogonal

function regression: Linking population biology to spatial varying

environmental conditions using climate projections. Global Change

Biology, 26(8), 4638–4649. https://doi.org/10.1111/gcb.15149
Thorson, J. T., Ciannelli, L., & Litzow, M. A. (2020). Defining indices of

ecosystem variability using biological samples of fish communities: A

generalization of empirical orthogonal functions. Progress in

Oceanography, 181, 102244. https://doi.org/10.1016/j.pocean.2019.

102244

Thorson, J. T., Ianelli, J. N., Larsen, E. A., Ries, L., Scheuerell, M. D.,

Szuwalski, C., & Zipkin, E. F. (2016). Joint dynamic species distribution

models: A tool for community ordination and spatio-temporal monitor-

ing. Global Ecology and Biogeography, 25(9), 1144–1158. https://doi.
org/10.1111/geb.12464

Thorson, J. T., Pinsky, M. L., & Ward, E. J. (2016). Model-based inference

for estimating shifts in species distribution, area occupied and centre

of gravity. Methods in Ecology and Evolution, 7(8), 990–1002. https://
doi.org/10.1111/2041-210X.12567

Thorson, J. T., Shelton, A. O., Ward, E. J., & Skaug, H. J. (2015). Geostatisti-

cal delta-generalized linear mixed models improve precision for

estimated abundance indices for West Coast groundfishes. ICES

Journal of Marine Science, 72(5), 1297–1310. https://doi.org/10.1093/
icesjms/fsu243

Vestfals, C. D., Ciannelli, L., & Hoff, G. R. (2016). Changes in habitat utiliza-

tion of slope-spawning flatfish across a bathymetric gradient. ICES

Journal of Marine Science, 73(7), 1875–1889. https://doi.org/10.1093/
icesjms/fsw112

DEFILIPPO ET AL. 17

https://doi.org/10.1111/fog.12494
https://doi.org/10.1126/science.1111322
https://doi.org/10.1126/science.aat2360
https://doi.org/10.1126/science.aat2360
https://doi.org/10.1126/science.1239352
http://www.R-project.org
http://www.R-project.org
https://doi.org/10.1016/j.dsr2.2016.01.003
https://doi.org/10.1016/j.csda.2006.03.005
https://doi.org/10.1016/j.csda.2006.03.005
https://doi.org/10.1016/j.pocean.2023.102973
https://doi.org/10.1016/j.pocean.2023.102973
https://doi.org/10.1002/for.3980040305
https://doi.org/10.1002/for.3980040305
https://doi.org/10.1111/eva.12874
https://doi.org/10.1111/eva.12874
https://doi.org/10.1029/2019GL083816
https://doi.org/10.1029/2019GL083816
https://doi.org/10.1016/j.dsr2.2007.08.023
https://doi.org/10.1016/j.dsr2.2007.08.023
https://doi.org/10.1046/j.1365-2419.2001.00157.x
https://doi.org/10.1016/j.dsr2.2012.02.020
https://doi.org/10.1016/S0967-0645(02)00327-2
https://doi.org/10.1016/S0967-0645(02)00327-2
https://doi.org/10.1016/j.pocean.2010.02.010
https://doi.org/10.1016/j.pocean.2010.02.010
https://doi.org/10.26428/1606-9919-2016-185-16-30
https://doi.org/10.26428/1606-9919-2016-185-16-30
https://doi.org/10.1007/s00300-018-2431-1
https://doi.org/10.1007/s00300-018-2431-1
https://doi.org/10.1139/cjfas-2017-0266
https://doi.org/10.1139/cjfas-2017-0266
https://doi.org/10.1002/lno.11238
https://doi.org/10.1093/icesjms/fsw193
https://doi.org/10.1016/j.fishres.2015.11.016
https://doi.org/10.1111/ecog.05471
https://doi.org/10.1111/ecog.05471
https://doi.org/10.1111/gcb.15149
https://doi.org/10.1016/j.pocean.2019.102244
https://doi.org/10.1016/j.pocean.2019.102244
https://doi.org/10.1111/geb.12464
https://doi.org/10.1111/geb.12464
https://doi.org/10.1111/2041-210X.12567
https://doi.org/10.1111/2041-210X.12567
https://doi.org/10.1093/icesjms/fsu243
https://doi.org/10.1093/icesjms/fsu243
https://doi.org/10.1093/icesjms/fsw112
https://doi.org/10.1093/icesjms/fsw112


Volvenko, I. V., Orlov, A. M., Gebruk, A. V., Katugin, O. N.,

Vinogradov, G. M., & Maznikova, O. A. (2018). Species richness and

taxonomic composition of trawl macrofauna of the North Pacific and

its adjacent seas. Scientific Reports, 8(1), 16604. https://doi.org/10.

1038/s41598-018-34819-4

Warton, D. I., Thibaut, L., & Wang, Y. A. (2017). The PIT-trap—A “model-

free” bootstrap procedure for inference about regression models with

discrete, multivariate responses. PLoS ONE, 12(7), e0181790. https://

doi.org/10.1371/journal.pone.0181790

Wyllie-Echeverria, T. I. N. A., & Wooster, W. S. (1998). Year-to-year

variations in Bering Sea ice cover and some consequences for fish

distributions. Fisheries Oceanography, 7(2), 159–170. https://doi.org/
10.1046/j.1365-2419.1998.00058.x

Zador, S., Aydin, K., & Cope, J. (2011). Fine-scale analysis of arrowtooth

flounder Atherestes stomias catch rates reveals spatial trends in

abundance. Marine Ecology Progress Series, 438, 229–239. https://doi.
org/10.3354/meps09316

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: DeFilippo, L. B., Thorson, J. T.,

O'Leary, C. A., Kotwicki, S., Hoff, J., Ianelli, J. N., Kulik, V. V., &

Punt, A. E. (2023). Characterizing dominant patterns of

spatiotemporal variation for a transboundary groundfish

assemblage. Fisheries Oceanography, 1–18. https://doi.org/10.

1111/fog.12651

18 DEFILIPPO ET AL.

https://doi.org/10.1038/s41598-018-34819-4
https://doi.org/10.1038/s41598-018-34819-4
https://doi.org/10.1371/journal.pone.0181790
https://doi.org/10.1371/journal.pone.0181790
https://doi.org/10.1046/j.1365-2419.1998.00058.x
https://doi.org/10.1046/j.1365-2419.1998.00058.x
https://doi.org/10.3354/meps09316
https://doi.org/10.3354/meps09316
https://doi.org/10.1111/fog.12651
https://doi.org/10.1111/fog.12651

	Characterizing dominant patterns of spatiotemporal variation for a transboundary groundfish assemblage
	1  INTRODUCTION
	2  METHODS
	2.1  Study region and survey extents
	2.2  Fisheries-independent survey data
	2.3  The cold pool index
	2.4  Model descriptions
	2.4.1  Exploratory EOF
	2.4.2  SVC model
	2.4.3  Range shift metrics
	2.4.4  Model estimation and validation


	3  RESULTS
	3.1  Spatial patterns: EBS and NBS
	3.2  Spatial patterns: WBS
	3.3  Axes of variability
	3.4  Spatially-varying cold pool effect
	3.5  Range shift metrics

	4  DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


